

Raj Master GM, Microsoft Silicon Operations & Reliability.

Microsoft Hardware Teams: 30+ years of Innovation

Specialty Devices & PC Peripherals

Surface Mice Cameras Keyboards IEB Hardware

Xbox Kinect Accessories Manufacturing & Supply Chain

Sourcing & Planning Manufacturing & Repair IC Packaging Silicon Reliability Quality & Reliability Safety Compliance & Sustainability Product Services & Localization

1982 PCHW Forms

1983Microsoft
Mouse
Debuts

1994

First ergonomic Keyboard Trackballs Joysticks

1999 Optical Mouse **2001** Xbox v1

2005

Xbox 360 Xbox Controller v2

2008 Surface

2009LifeCam
Bluetooth Mobile
Keyboard

2010

Xbox 360S Transforming DPAD KINECT LifeCam Studio Arc Touch Mouse

2011 Xbox Speed Wheel

2012 Surface RT

2013 Surface Pro XBOX One

2014 Surface Pro 2

2014 Exciting!!!! NOKIA!

Package Drivers

Hardware Platforms at MSFT have three distinct package trajectories -

		1 9 1
High performance Processors packages for Console (XBOX)	Specialty GaAs/Si/Pkg for Unique Applications (Kinect)	Small Form factor packages for handheld devices Tablets + Cell Phone
Long product life cycle – 3 to 5 years	Significant use of image sensors and illumination	Short product development cycle (not field life) of less than one year
Severe thermal management issues. Power > 100W	Higher power (Watts) on unique long term reliability requirements	Fine pitch devices BGA & lead- frame based devices
Die shrinks (process node 28nm > 20nm > 14nm) resulting in increasing power density	"Always on"	Processors with memory integration using Package on Package (POP) & Stacked die
		Increased use of sensors (Accelerometers, Gyroscopes, Ambient light sensors, Flash LEDs)
		Lowest cost implementation with Fast volume ramp

Pkg Trends: Long Product life hardware

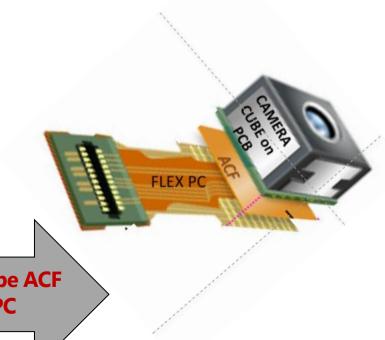
Processors

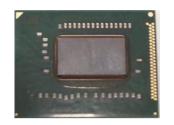
Substrate: 3/2/3

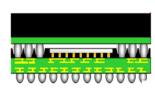
: 3/2/3

Substrate: 2/2/2

Processor Cost reduction
Silicon / Substrate / discretes


Cameras


Packaged Sensor to Chip on board (COB) camera module.



COB Camera Cube ACF attach to FPC

Pkg Trends: Short Product Development Cycle

Processors/ASIC's

Maximum Processing Power & Bandwidth with Minimum Power

Sensor's

Enable new experience, software applications & improve reliability - Cameras, Compass, Gyros etc.

Conventional IC's

Au wire to Ag/Cu wire Smaller die/ pkg. size

Summary - Packaging Trends

—Always Green Packaging—

Enable Performance Faster and Cooler	Form Factor Smaller X, Y, and Z Dimensions	Cost
 Flip Chip development for 20nm & 14nm Flip chip assembly/ Copper pillar Aggressive thermal/mechanical management 	 Stacked Die and Package stacking (PoP) Increased use of MEMS and custom sensor packaging 	 Reduction in Gold use without compromising Quality Aggressive Cooling techniques to enable smaller form factors

